Weekend Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: pass65

Professional-Data-Engineer Google Professional Data Engineer Exam Questions and Answers

Questions 4

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Buy Now
Questions 5

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Buy Now
Questions 6

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Buy Now
Questions 7

Your company is running their first dynamic campaign, serving different offers by analyzing real-time data during the holiday season. The data scientists are collecting terabytes of data that rapidly grows every hour during their 30-day campaign. They are using Google Cloud Dataflow to preprocess the data and collect the feature (signals) data that is needed for the machine learning model in Google Cloud Bigtable. The team is observing suboptimal performance with reads and writes of their initial load of 10 TB of data. They want to improve this performance while minimizing cost. What should they do?

Options:

A.

Redefine the schema by evenly distributing reads and writes across the row space of the table.

B.

The performance issue should be resolved over time as the site of the BigDate cluster is increased.

C.

Redesign the schema to use a single row key to identify values that need to be updated frequently in the cluster.

D.

Redesign the schema to use row keys based on numeric IDs that increase sequentially per user viewing the offers.

Buy Now
Questions 8

Your company is migrating their 30-node Apache Hadoop cluster to the cloud. They want to re-use Hadoop jobs they have already created and minimize the management of the cluster as much as possible. They also want to be able to persist data beyond the life of the cluster. What should you do?

Options:

A.

Create a Google Cloud Dataflow job to process the data.

B.

Create a Google Cloud Dataproc cluster that uses persistent disks for HDFS.

C.

Create a Hadoop cluster on Google Compute Engine that uses persistent disks.

D.

Create a Cloud Dataproc cluster that uses the Google Cloud Storage connector.

E.

Create a Hadoop cluster on Google Compute Engine that uses Local SSD disks.

Buy Now
Questions 9

Your company is streaming real-time sensor data from their factory floor into Bigtable and they have noticed extremely poor performance. How should the row key be redesigned to improve Bigtable performance on queries that populate real-time dashboards?

Options:

A.

Use a row key of the form .

B.

Use a row key of the form .

C.

Use a row key of the form #.

D.

Use a row key of the form >##.

Buy Now
Questions 10

An external customer provides you with a daily dump of data from their database. The data flows into Google Cloud Storage GCS as comma-separated values (CSV) files. You want to analyze this data in Google BigQuery, but the data could have rows that are formatted incorrectly or corrupted. How should you build this pipeline?

Options:

A.

Use federated data sources, and check data in the SQL query.

B.

Enable BigQuery monitoring in Google Stackdriver and create an alert.

C.

Import the data into BigQuery using the gcloud CLI and set max_bad_records to 0.

D.

Run a Google Cloud Dataflow batch pipeline to import the data into BigQuery, and push errors to another dead-letter table for analysis.

Buy Now
Questions 11

You work for a car manufacturer and have set up a data pipeline using Google Cloud Pub/Sub to capture anomalous sensor events. You are using a push subscription in Cloud Pub/Sub that calls a custom HTTPS endpoint that you have created to take action of these anomalous events as they occur. Your custom HTTPS endpoint keeps getting an inordinate amount of duplicate messages. What is the most likely cause of these duplicate messages?

Options:

A.

The message body for the sensor event is too large.

B.

Your custom endpoint has an out-of-date SSL certificate.

C.

The Cloud Pub/Sub topic has too many messages published to it.

D.

Your custom endpoint is not acknowledging messages within the acknowledgement deadline.

Buy Now
Questions 12

Your company handles data processing for a number of different clients. Each client prefers to use their own suite of analytics tools, with some allowing direct query access via Google BigQuery. You need to secure the data so that clients cannot see each other’s data. You want to ensure appropriate access to the data. Which three steps should you take? (Choose three.)

Options:

A.

Load data into different partitions.

B.

Load data into a different dataset for each client.

C.

Put each client’s BigQuery dataset into a different table.

D.

Restrict a client’s dataset to approved users.

E.

Only allow a service account to access the datasets.

F.

Use the appropriate identity and access management (IAM) roles for each client’s users.

Buy Now
Questions 13

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Buy Now
Questions 14

Your company built a TensorFlow neural-network model with a large number of neurons and layers. The model fits well for the training data. However, when tested against new data, it performs poorly. What method can you employ to address this?

Options:

A.

Threading

B.

Serialization

C.

Dropout Methods

D.

Dimensionality Reduction

Buy Now
Questions 15

You are building a model to make clothing recommendations. You know a user’s fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?

Options:

A.

Continuously retrain the model on just the new data.

B.

Continuously retrain the model on a combination of existing data and the new data.

C.

Train on the existing data while using the new data as your test set.

D.

Train on the new data while using the existing data as your test set.

Buy Now
Questions 16

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in thedashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

Options:

A.

Check the dashboard application to see if it is not displaying correctly.

B.

Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.

C.

Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.

D.

Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Buy Now
Questions 17

Your startup has never implemented a formal security policy. Currently, everyone in the company has access to the datasets stored in Google BigQuery. Teams have freedom to use the service as they see fit, and they have not documented their use cases. You have been asked to secure the data warehouse. You need to discover what everyone is doing. What should you do first?

Options:

A.

Use Google Stackdriver Audit Logs to review data access.

B.

Get the identity and access management IIAM) policy of each table

C.

Use Stackdriver Monitoring to see the usage of BigQuery query slots.

D.

Use the Google Cloud Billing API to see what account the warehouse is being billed to.

Buy Now
Questions 18

You designed a database for patient records as a pilot project to cover a few hundred patients in three clinics. Your design used a single database table to represent all patients and their visits, and you used self-joins to generate reports. The server resource utilization was at 50%. Since then, the scope of the project has expanded. The database must now store 100 times more patientrecords. You can no longer run the reports, because they either take too long or they encounter errors with insufficient compute resources. How should you adjust the database design?

Options:

A.

Add capacity (memory and disk space) to the database server by the order of 200.

B.

Shard the tables into smaller ones based on date ranges, and only generate reports with prespecified date ranges.

C.

Normalize the master patient-record table into the patient table and the visits table, and create other necessary tables to avoid self-join.

D.

Partition the table into smaller tables, with one for each clinic. Run queries against the smaller table pairs, and use unions for consolidated reports.

Buy Now
Questions 19

You want to use a database of information about tissue samples to classify future tissue samples as either normal or mutated. You are evaluating an unsupervised anomaly detection method for classifying the tissue samples. Which two characteristic support this method? (Choose two.)

Options:

A.

There are very few occurrences of mutations relative to normal samples.

B.

There are roughly equal occurrences of both normal and mutated samples in the database.

C.

You expect future mutations to have different features from the mutated samples in the database.

D.

You expect future mutations to have similar features to the mutated samples in the database.

E.

You already have labels for which samples are mutated and which are normal in the database.

Buy Now
Questions 20

You have Google Cloud Dataflow streaming pipeline running with a Google Cloud Pub/Sub subscription as the source. You need to make an update to the code that will make the new Cloud Dataflow pipeline incompatible with the current version. You do not want to lose any data when making this update. What should you do?

Options:

A.

Update the current pipeline and use the drain flag.

B.

Update the current pipeline and provide the transform mapping JSON object.

C.

Create a new pipeline that has the same Cloud Pub/Sub subscription and cancel the old pipeline.

D.

Create a new pipeline that has a new Cloud Pub/Sub subscription and cancel the old pipeline.

Buy Now
Questions 21

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

Options:

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.

Buy Now
Questions 22

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

Options:

A.

Re-write the application to load accumulated data every 2 minutes.

B.

Convert the streaming insert code to batch load for individual messages.

C.

Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.

D.

Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

Buy Now
Questions 23

Your company has hired a new data scientist who wants to perform complicated analyses across very large datasets stored in Google Cloud Storage and in a Cassandra cluster on Google Compute Engine. The scientist primarily wants to create labelled data sets for machine learning projects, along with some visualization tasks. She reports that her laptop is not powerful enough to perform her tasks and it is slowing her down. You want to help her perform her tasks. What should you do?

Options:

A.

Run a local version of Jupiter on the laptop.

B.

Grant the user access to Google Cloud Shell.

C.

Host a visualization tool on a VM on Google Compute Engine.

D.

Deploy Google Cloud Datalab to a virtual machine (VM) on Google Compute Engine.

Buy Now
Questions 24

You want to process payment transactions in a point-of-sale application that will run on Google Cloud Platform. Your user base could grow exponentially, but you do not want to manage infrastructure scaling.

Which Google database service should you use?

Options:

A.

Cloud SQL

B.

BigQuery

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 25

You are deploying 10,000 new Internet of Things devices to collect temperature data in your warehouses globally. You need to process, store and analyze these very large datasets in real time. What should you do?

Options:

A.

Send the data to Google Cloud Datastore and then export to BigQuery.

B.

Send the data to Google Cloud Pub/Sub, stream Cloud Pub/Sub to Google Cloud Dataflow, and store the data in Google BigQuery.

C.

Send the data to Cloud Storage and then spin up an Apache Hadoop cluster as needed in Google Cloud Dataproc whenever analysis is required.

D.

Export logs in batch to Google Cloud Storage and then spin up a Google Cloud SQL instance, import the data from Cloud Storage, and run an analysis as needed.

Buy Now
Questions 26

You are designing the architecture to process your data from Cloud Storage to BigQuery by using Dataflow. The network team provided you with the Shared VPC network and subnetwork to be used by your pipelines. You need to enable the deployment of the pipeline on the Shared VPC network. What should you do?

Options:

A.

Assign the compute. networkUser role to the Dataflow service agent.

B.

Assign the compute.networkUser role to the service account that executes the Dataflow pipeline.

C.

Assign the dataflow, admin role to the Dataflow service agent.

D.

Assign the dataflow, admin role to the service account that executes the Dataflow pipeline.

Buy Now
Questions 27

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying data. Which query type should you use?

Options:

A.

Include ORDER BY DESK on timestamp column and LIMIT to 1.

B.

Use GROUP BY on the unique ID column and timestamp column and SUM on the values.

C.

Use the LAG window function with PARTITION by unique ID along with WHERE LAG IS NOT NULL.

D.

Use the ROW_NUMBER window function with PARTITION by unique ID along with WHERE row equals 1.

Buy Now
Questions 28

Government regulations in the banking industry mandate the protection of client’s personally identifiable information (PII). Your company requires PII to be access controlled encrypted and compliant with major data protection standards In addition to using Cloud Data Loss Prevention (Cloud DIP) you want to follow Google-recommended practices and use service accounts to control access to PII. What should you do?

Options:

A.

Assign the required identity and Access Management (IAM) roles to every employee, and create a single service account to access protect resources

B.

Use one service account to access a Cloud SQL database and use separate service accounts for each human user

C.

Use Cloud Storage to comply with major data protection standards. Use one service account shared by all users

D.

Use Cloud Storage to comply with major data protection standards. Use multiple service accounts attached to IAM groups to grant the appropriate access to each group

Buy Now
Questions 29

A data scientist has created a BigQuery ML model and asks you to create an ML pipeline to serve predictions. You have a REST API application with the requirement to serve predictions for an individual user ID with latency under 100 milliseconds. You use the following query to generate predictions: SELECT predicted_label, user_id FROM ML.PREDICT (MODEL ‘dataset.model’, table user_features). How should you create the ML pipeline?

Options:

A.

Add a WHERE clause to the query, and grant the BigQuery Data Viewer role to the application service account.

B.

Create an Authorized View with the provided query. Share the dataset that contains the view with the application service account.

C.

Create a Cloud Dataflow pipeline using BigQueryIO to read results from the query. Grant the Dataflow Worker role to the application service account.

D.

Create a Cloud Dataflow pipeline using BigQueryIO to read predictions for all users from the query. Write the results to Cloud Bigtable using BigtableIO. Grant the Bigtable Reader role to the application service account so that the application can read predictions for individual users from Cloud Bigtable.

Buy Now
Questions 30

You have an Oracle database deployed in a VM as part of a Virtual Private Cloud (VPC) network. You want to replicate and continuously synchronize 50 tables to BigQuery. You want to minimize the need to manage infrastructure. What should you do?

Options:

A.

Create a Datastream service from Oracle to BigQuery, use a private connectivity configuration to the same VPC network, and a connection profile to BigQuery.

B.

Create a Pub/Sub subscription to write to BigQuery directly Deploy the Debezium Oracle connector to capture changes in the Oracle database, and sink to the Pub/Sub topic.

C.

Deploy Apache Kafka in the same VPC network, use Kafka Connect Oracle Change Data Capture (CDC), and Dataflow to stream the Kafka topic to BigQuery.

D.

Deploy Apache Kafka in the same VPC network, use Kafka Connect Oracle change data capture (CDC), and the Kafka Connect Google BigQuery Sink Connector.

Buy Now
Questions 31

Your analytics team wants to build a simple statistical model to determine which customers are most likely to work with your company again, based on a few different metrics. They want to run the model on Apache Spark, using data housed in Google Cloud Storage, and you have recommended using Google Cloud Dataproc to execute this job. Testing has shown that this workload can run in approximately 30 minutes on a 15-node cluster, outputting the results into Google BigQuery. The plan is to run this workload weekly. How should you optimize the cluster for cost?

Options:

A.

Migrate the workload to Google Cloud Dataflow

B.

Use pre-emptible virtual machines (VMs) for the cluster

C.

Use a higher-memory node so that the job runs faster

D.

Use SSDs on the worker nodes so that the job can run faster

Buy Now
Questions 32

You are building a new data pipeline to share data between two different types of applications: jobs generators and job runners. Your solution must scale to accommodate increases in usage and must accommodate the addition of new applications without negatively affecting the performance of existing ones. What should you do?

Options:

A.

Create an API using App Engine to receive and send messages to the applications

B.

Use a Cloud Pub/Sub topic to publish jobs, and use subscriptions to execute them

C.

Create a table on Cloud SQL, and insert and delete rows with the job information

D.

Create a table on Cloud Spanner, and insert and delete rows with the job information

Buy Now
Questions 33

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Buy Now
Questions 34

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Buy Now
Questions 35

You are using Workflows to call an API that returns a 1 KB JSON response, apply some complex business logic on this response, wait for the logic to complete, and then perform a load from a Cloud Storage file to BigQuery. The Workflows standard library does not have sufficient capabilities to perform your complex logic, and you want to use Python's standard library instead. You want to optimize your workflow for simplicity and speed of execution. What should you do?

Options:

A.

Invoke a Cloud Function instance that uses Python to apply the logic on your JSON file.

B.

Invoke a subworkflow in Workflows to apply the logic on your JSON file.

C.

Create a Cloud Composer environment and run the logic in Cloud Composer.

D.

Create a Dataproc cluster, and use PySpark to apply the logic on your JSON file.

Buy Now
Questions 36

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Buy Now
Questions 37

To give a user read permission for only the first three columns of a table, which access control method would you use?

Options:

A.

Primitive role

B.

Predefined role

C.

Authorized view

D.

It's not possible to give access to only the first three columns of a table.

Buy Now
Questions 38

Which of these is not a supported method of putting data into a partitioned table?

Options:

A.

If you have existing data in a separate file for each day, then create a partitioned table and upload each file into the appropriate partition.

B.

Run a query to get the records for a specific day from an existing table and for the destination table, specify a partitioned table ending with the day in the format "$YYYYMMDD".

C.

Create a partitioned table and stream new records to it every day.

D.

Use ORDER BY to put a table's rows into chronological order and then change the table's type to "Partitioned".

Buy Now
Questions 39

What is the general recommendation when designing your row keys for a Cloud Bigtable schema?

Options:

A.

Include multiple time series values within the row key

B.

Keep the row keep as an 8 bit integer

C.

Keep your row key reasonably short

D.

Keep your row key as long as the field permits

Buy Now
Questions 40

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Buy Now
Questions 41

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Buy Now
Questions 42

Which is the preferred method to use to avoid hotspotting in time series data in Bigtable?

Options:

A.

Field promotion

B.

Randomization

C.

Salting

D.

Hashing

Buy Now
Questions 43

Each analytics team in your organization is running BigQuery jobs in their own projects. You want to enable each team to monitor slot usage within their projects. What should you do?

Options:

A.

Create a Stackdriver Monitoring dashboard based on the BigQuery metric query/scanned_bytes

B.

Create a Stackdriver Monitoring dashboard based on the BigQuery metric slots/allocated_for_project

C.

Create a log export for each project, capture the BigQuery job execution logs, create a custom metric based on the totalSlotMs, and create a Stackdriver Monitoring dashboard based on the custom metric

D.

Create an aggregated log export at the organization level, capture the BigQuery job execution logs, create a custom metric based on the totalSlotMs, and create a Stackdriver Monitoring dashboard based on the custom metric

Buy Now
Questions 44

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Buy Now
Questions 45

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 46

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Buy Now
Questions 47

What are two of the characteristics of using online prediction rather than batch prediction?

Options:

A.

It is optimized to handle a high volume of data instances in a job and to run more complex models.

B.

Predictions are returned in the response message.

C.

Predictions are written to output files in a Cloud Storage location that you specify.

D.

It is optimized to minimize the latency of serving predictions.

Buy Now
Questions 48

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor=<actorname> ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Professional-Data-Engineer Question 48

Professional-Data-Engineer Question 48

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Buy Now
Questions 49

What is the recommended action to do in order to switch between SSD and HDD storage for your Google Cloud Bigtable instance?

Options:

A.

create a third instance and sync the data from the two storage types via batch jobs

B.

export the data from the existing instance and import the data into a new instance

C.

run parallel instances where one is HDD and the other is SDD

D.

the selection is final and you must resume using the same storage type

Buy Now
Questions 50

For the best possible performance, what is the recommended zone for your Compute Engine instance and Cloud Bigtable instance?

Options:

A.

Have the Compute Engine instance in the furthest zone from the Cloud Bigtable instance.

B.

Have both the Compute Engine instance and the Cloud Bigtable instance to be in different zones.

C.

Have both the Compute Engine instance and the Cloud Bigtable instance to be in the same zone.

D.

Have the Cloud Bigtable instance to be in the same zone as all of the consumers of your data.

Buy Now
Questions 51

The Dataflow SDKs have been recently transitioned into which Apache service?

Options:

A.

Apache Spark

B.

Apache Hadoop

C.

Apache Kafka

D.

Apache Beam

Buy Now
Questions 52

Which of these are examples of a value in a sparse vector? (Select 2 answers.)

Options:

A.

[0, 5, 0, 0, 0, 0]

B.

[0, 0, 0, 1, 0, 0, 1]

C.

[0, 1]

D.

[1, 0, 0, 0, 0, 0, 0]

Buy Now
Questions 53

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Buy Now
Questions 54

What are the minimum permissions needed for a service account used with Google Dataproc?

Options:

A.

Execute to Google Cloud Storage; write to Google Cloud Logging

B.

Write to Google Cloud Storage; read to Google Cloud Logging

C.

Execute to Google Cloud Storage; execute to Google Cloud Logging

D.

Read and write to Google Cloud Storage; write to Google Cloud Logging

Buy Now
Questions 55

Which SQL keyword can be used to reduce the number of columns processed by BigQuery?

Options:

A.

BETWEEN

B.

WHERE

C.

SELECT

D.

LIMIT

Buy Now
Questions 56

MJTelco is building a custom interface to share data. They have these requirements:

    They need to do aggregations over their petabyte-scale datasets.

    They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Buy Now
Questions 57

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Buy Now
Questions 58

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Buy Now
Questions 59

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Buy Now
Questions 60

You need to compose visualization for operations teams with the following requirements:

    Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

    The report must not be more than 3 hours delayed from live data.

    The actionable report should only show suboptimal links.

    Most suboptimal links should be sorted to the top.

    Suboptimal links can be grouped and filtered by regional geography.

    User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possible

combination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possible

combination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Buy Now
Questions 61

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Buy Now
Exam Name: Google Professional Data Engineer Exam
Last Update: Jun 15, 2025
Questions: 376

PDF + Testing Engine

$57.75  $164.99

Testing Engine

$43.75  $124.99
buy now Professional-Data-Engineer testing engine

PDF (Q&A)

$36.75  $104.99
buy now Professional-Data-Engineer pdf