Summer Special Limited Time 50% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 28285018

ANS-C01 Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Questions 4

An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company's on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers.

The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company's global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud. The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency.

The company migrates the MQTT brokers to run on Amazon EC2 instances.

What should the company do next to meet these requirements?

Options:

A.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.

B.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLUse Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator

D.

Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.

Buy Now
Questions 5

A company is using an AWS Site-to-Site VPN connection from the company's on-premises data center to a virtual private gateway in the AWS Cloud Because of congestion, the company is experiencing availability and performance issues as traffic travels across the internet before the traffic reaches AWS. A network engineer must reduce these issues for the connection as quickly as possible with minimum administration effort.

Which solution will meet these requirements?

Options:

A.

Edit the existing Site-to-Site VPN connection by enabling acceleration. Stop and start the VPN service on the customer gateway for the new setting to take effect.

B.

Configure a transit gateway in the same AWS Region as the existing virtual private gateway. Create a new accelerated Site-to-Site VPN connection. Connect the new connection to the transit gateway by using a VPN attachment. Update the customer gateway device to use the new Site to Site VPN connection. Delete the existing Site-to-Site VPN connection

C.

Create a new accelerated Site-to-Site VPN connection. Connect the new Site-to-Site VPN connection to the existing virtual private gateway. Update the customer gateway device to use the new Site-to-Site VPN connection. Delete the existing Site-to-Site VPN connection.

D.

Create a new AWS Direct Connect connection with a private VIF between the on-premises data center and the AWS Cloud. Update the customer gateway device to use the new Direct Connect connection. Delete the existing Site-to-Site VPN connection.

Buy Now
Questions 6

A company’s network engineer is designing a hybrid DNS solution for an AWS Cloud workload. Individual teams want to manage their own DNS hostnames for their applications in their development environment. The solution must integrate the application-specific hostnames with the centrally managed DNS hostnames from the on-premises network and must provide bidirectional name resolution. The solution also must minimize management overhead.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

Options:

A.

Use an Amazon Route 53 Resolver inbound endpoint.

B.

Modify the DHCP options set by setting a custom DNS server value.

C.

Use an Amazon Route 53 Resolver outbound endpoint.

D.

Create DNS proxy servers.

E.

Create Amazon Route 53 private hosted zones.

F.

Set up a zone transfer between Amazon Route 53 and the on-premises DNS.

Buy Now
Questions 7

A company has several production applications across different accounts in the AWS Cloud. The company operates from the us-east-1 Region only. Only certain partner companies can access the applications. The applications are running on Amazon EC2 instances that are in an Auto Scaling group behind an Application Load Balancer (ALB). The EC2 instances are in private subnets and allow traffic only from the ALB. The ALB is in a public subnet and allows inbound traffic only from partner network IP address ranges over port 80.

When the company adds a new partner, the company must allow the IP address range of the partner network in the security group that is associated with the ALB in each account. A network engineer must implement a solution to centrally manage the partner network IP address ranges.

Which solution will meet these requirements in the MOST operationally efficient manner?

Options:

A.

Create an Amazon DynamoDB table to maintain all IP address ranges and security groups that need to be updated. Update the DynamoDB table with the new IP address range when the company adds a new partner. Invoke an AWS Lambda function to read new IP address ranges and security groups from the DynamoDB table to update the security groups. Deploy this solution in all accounts.

B.

Create a new prefix list. Add all allowed IP address ranges to the prefix list. Use Amazon EventBridge (Amazon CloudWatch Events) rules to invoke an AWS Lambda function to update security groups whenever a new IP address range is added to the prefix list. Deploy this solution in all accounts.

C.

Create a new prefix list. Add all allowed IP address ranges to the prefix list. Share the prefix list across different accounts by using AWS Resource Access Manager (AWS RAM). Update security groups to use the prefix list instead of the partner IP address range. Update the prefix list with the new IP address range when the company adds a new partner.

D.

Create an Amazon S3 bucket to maintain all IP address ranges and security groups that need to be updated. Update the S3 bucket with the new IP address range when the company adds a new partner. Invoke an AWS Lambda function to read new IP address ranges and security groups from the S3 bucket to update the security groups. Deploy this solution in all accounts.

Buy Now
Questions 8

An AWS CloudFormation template is being used to create a VPC peering connection between two existing operational VPCs, each belonging to a different AWS account. All necessary components in the ‘Remote’ (receiving) account are already in place.

The template below creates the VPC peering connection in the Originating account. It contains these components:

AWSTemplateFormation Version: 2010-09-09

Parameters:

Originating VCId:

Type: String

RemoteVPCId:

Type: String

RemoteVPCAccountId:

Type: String

Resources:

newVPCPeeringConnection:

Type: ‘AWS::EC2::VPCPeeringConnection’

Properties:

VpcdId: !Ref OriginatingVPCId

PeerVpcId: !Ref RemoteVPCId

PeerOwnerId: !Ref RemoteVPCAccountId

Which additional AWS CloudFormation components are necessary in the Originating account to create an operational cross-account VPC peering connection with AWS CloudFormation? (Select two.)

Options:

A.

Resources:NewEC2SecurityGroup:Type: AWS::EC2::SecurityGroup

B.

Resources:NetworkInterfaceToRemoteVPC:Type: “AWS::EC2NetworkInterface”

C.

Resources:newEC2Route:Type: AWS::EC2::Route

D.

Resources:VPCGatewayToRemoteVPC:Type: “AWS::EC2::VPCGatewayAttachment”

E.

Resources:newVPCPeeringConnection:Type: ‘AWS::EC2VPCPeeringConnection’PeerRoleArn: !Ref PeerRoleArn

Buy Now
Questions 9

A company is planning to deploy many software-defined WAN (SD-WAN) sites. The company is using AWS Transit Gateway and has deployed a transit gateway in the required AWS Region. A network engineer needs to deploy the SD-WAN hub virtual appliance into a VPC that is connected to the transit gateway. The solution must support at least 5 Gbps of throughput from the SD-WAN hub virtual appliance to other VPCs that are attached to the transit gateway.

Which solution will meet these requirements?

Options:

A.

Create a new VPC for the SD-WAN hub virtual appliance. Create two IPsec VPN connections between the SD-WAN hub virtual appliance and the transit gateway. Configure BGP over the IPsec VPN connections

B.

Assign a new CIDR block to the transit gateway. Create a new VPC for the SD-WAN hub virtual appliance. Attach the new VPC to the transit gateway with a VPC attachment. Add a transit gateway Connect attachment. Create a Connect peer and specify the GRE and BGP parameters. Create a route in the appropriate VPC for the SD-WAN hub virtual appliance to route to the transit gateway.

C.

Create a new VPC for the SD-WAN hub virtual appliance. Attach the new VPC to the transit gateway with a VPC attachment. Create two IPsec VPN connections between the SD-WAN hub virtual appliance and the transit gateway. Configure BGP over the IPsec VPN connections.

D.

Assign a new CIDR block to the transit gateway. Create a new VPC for the SD-WAN hub virtual appliance. Attach the new VPC to the transit gateway with a VPC attachment. Add a transit gateway Connect attachment. Create a Connect peer and specify the VXLAN and BGP parameters. Create a route in the appropriate VPC for the SD-WAN hub virtual appliance to route to the transit gateway.

Buy Now
Questions 10

A company is running multiple workloads on Amazon EC2 instances in public subnets. In a recent incident, an attacker exploited an application vulnerability on one of the EC2 instances to gain access to the instance. The company fixed the application and launched a replacement EC2 instance that contains the updated application.

The attacker used the compromised application to spread malware over the internet. The company became aware of the compromise through a notification from AWS. The company needs the ability to identify when an application that is deployed on an EC2 instance is spreading malware.

Which solution will meet this requirement with the LEAST operational effort?

Options:

A.

Use Amazon GuardDuty to analyze traffic patterns by inspecting DNS requests and VPC flow logs.

B.

Use Amazon GuardDuty to deploy AWS managed decoy systems that are equipped with the most recent malware signatures.

C.

Set up a Gateway Load Balancer. Run an intrusion detection system (IDS) appliance from AWS Marketplace on Amazon EC2 for traffic inspection.

D.

Configure Amazon Inspector to perform deep packet inspection of outgoing traffic.

Buy Now
Questions 11

A company manages resources across VPCs in multiple AWS Regions. The company needs to connect to the resources by using its internal domain name. A network engineer needs to apply the aws.example.com DNS suffix to all resources.

What must the network engineer do to meet this requirement?

Options:

A.

Create an Amazon Route 53 private hosted zone for aws.example.com in each Region that has resources. Associate the private hosted zone with that Region's VPC. In the appropriate private hosted zone, create DNS records for the resources in each Region.

B.

Create one Amazon Route 53 private hosted zone for aws.example.com. Configure the private hosted zone to allow zone transfers with every VPC.

C.

Create one Amazon Route 53 private hosted zone for example.com. Create a single resource record for aws.example.com in the private hosted zone. Apply a multivalue answer routing policy to the record. Add all VPC resources as separate values in the routing policy.

D.

Create one Amazon Route 53 private hosted zone for aws.example.com. Associate the private hosted zone with every VPC that has resources. In the private hosted zone, create DNS records for all resources.

Buy Now
Questions 12

A company uses a hybrid architecture and has an AWS Direct Connect connection between its on-premises data center and AWS. The company has production applications that run in the on-premises data center. The company also has production applications that run in a VPC. The applications that run in the on-premises data center need to communicate with the applications that run in the VPC. The company is using corp.example.com as the domain name for the on-premises resources and is using an Amazon Route 53 private hosted zone for aws.example.com to host the VPC resources.

The company is using an open-source recursive DNS resolver in a VPC subnet and is using a DNS resolver in the on-premises data center. The company's on-premises DNS resolver has a forwarder that directs requests for the aws.example.com domain name to the DNS resolver in the VPC. The DNS resolver in the VPC has a forwarder that directs requests for the corp.example.com domain name to the DNS resolver in the on-premises data center. The company has deckled to replace the open-source recursive DNS resolver with Amazon Route 53 Resolver endpoints.

Which combination of steps should a network engineer take to make this replacement? (Choose three.)

Options:

A.

Create a Route 53 Resolver rule to forward aws.example.com domain queries to the IP addresses of the outbound endpoint.

B.

Configure the on-premises DNS resolver to forward aws.example.com domain queries to the IP addresses of the inbound endpoint.

C.

Create a Route 53 Resolver inbound endpoint and a Route 53 Resolver outbound endpoint.

D.

Create a Route 53 Resolver rule to forward aws.example.com domain queries to the IP addresses of the inbound endpoint.

E.

Create a Route 53 Resolver rule to forward corp.example.com domain queries to the IP address of the on-premises DNS resolver.

F.

Configure the on-premises DNS resolver to forward aws.example.com queries to the IP addresses of the outbound endpoint.

Buy Now
Questions 13

A real estate company is building an internal application so that real estate agents can upload photos and videos of various properties. The application will store these photos and videos in an Amazon S3 bucket as objects and will use Amazon DynamoDB to store corresponding metadata. The S3 bucket will be configured to publish all PUT events for new object uploads to an Amazon Simple Queue Service (Amazon SQS) queue.

A compute cluster of Amazon EC2 instances will poll the SQS queue to find out about newly uploaded objects. The cluster will retrieve new objects, perform proprietary image and video recognition and classification update metadata in DynamoDB and replace the objects with new watermarked objects. The company does not want public IP addresses on the EC2 instances.

Which networking design solution will meet these requirements MOST cost-effectively as application usage increases?

Options:

A.

Place the EC2 instances in a public subnet. Disable the Auto-assign Public IP option while launching the EC2 instances. Create an internet gateway. Attach the internet gateway to the VPC. In the public subnet's route table, add a default route that points to the internet gateway.

B.

Place the EC2 instances in a private subnet. Create a NAT gateway in a public subnet in the same Availability Zone. Create an internet gateway. Attach the internet gateway to the VPC. In the public subnet's route table, add a default route that points to the internet gateway

C.

Place the EC2 instances in a private subnet. Create an interface VPC endpoint for Amazon SQS. Create gateway VPC endpoints for Amazon S3 and DynamoDB.

D.

Place the EC2 instances in a private subnet. Create a gateway VPC endpoint for Amazon SQS.Create interface VPC endpoints for Amazon S3 and DynamoDB.

Buy Now
Exam Code: ANS-C01
Exam Name: Amazon AWS Certified Advanced Networking - Specialty
Last Update: Oct 5, 2023
Questions: 99

PDF + Testing Engine

$83  $165.99

Testing Engine

$57.5  $114.99
buy now ANS-C01 testing engine

PDF (Q&A)

$52.5  $104.99
buy now ANS-C01 pdf